Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Soc Mass Spectrom ; 35(3): 487-497, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329320

RESUMO

Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.


Assuntos
Peptídeo Hidrolases , Espectrometria de Massas em Tandem , Humanos , Proteômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Colagenases , Biomarcadores
2.
Adv Cancer Res ; 154: 15-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35459468

RESUMO

Cancer is a complex disease and a significant cause of mortality worldwide. Over the course of nearly all cancer types, collagen within the tumor microenvironment influences emergence, progression, and metastasis. This review discusses collagen regulation within the tumor microenvironment, pathological involvement of collagen, and predictive values of collagen and related extracellular matrix components in main cancer types. A survey of predictive tests leveraging collagen assays using clinical cohorts is presented. A conclusion is that collagen has high predictive value in monitoring cancer processes and stratifying by outcomes. New approaches should be considered that continue to define molecular facets of collagen related to cancer.


Assuntos
Colágeno , Neoplasias , Microambiente Tumoral , Biomarcadores Tumorais , Proteínas da Matriz Extracelular , Humanos , Neoplasias/diagnóstico
3.
Metabolites ; 12(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35323675

RESUMO

Point-of-care screening tools are essential to expedite patient care and decrease reliance on slow diagnostic tools (e.g., microbial cultures) to identify pathogens and their associated antibiotic resistance. Analysis of volatile organic compounds (VOC) emitted from biological media has seen increased attention in recent years as a potential non-invasive diagnostic procedure. This work explores the use of solid phase micro-extraction (SPME) and ambient plasma ionization mass spectrometry (MS) to rapidly acquire VOC signatures of bacteria and fungi. The MS spectrum of each pathogen goes through a preprocessing and feature extraction pipeline. Various supervised and unsupervised machine learning (ML) classification algorithms are trained and evaluated on the extracted feature set. These are able to classify the type of pathogen as bacteria or fungi with high accuracy, while marked progress is also made in identifying specific strains of bacteria. This study presents a new approach for the identification of pathogens from VOC signatures collected using SPME and ambient ionization MS by training classifiers on just a few samples of data. This ambient plasma ionization and ML approach is robust, rapid, precise, and can potentially be used as a non-invasive clinical diagnostic tool for point-of-care applications.

4.
PLoS Negl Trop Dis ; 15(9): e0009539, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591842

RESUMO

Substandard and falsified (SF) antimalarials have devastating consequences including increased morbidity, mortality and economic losses. Portable medicine quality screening devices are increasingly available, but whether their use for the detection of SF antimalarials is cost-effective is not known. We evaluated the cost-effectiveness of introducing such devices in post-market surveillance in pharmacies in Laos, conservatively focusing on their outcome in detecting SF artemisinin-based combination therapies (ACTs). We simulated the deployment of six portable screening devices: two handheld near-infrared [MicroPHAZIR RX, NIR-S-G1], two handheld Raman [Progeny, TruScan RM]; one portable mid-infrared [4500a FTIR] spectrometers, and single-use disposable paper analytical devices [PADs]. We considered two scenarios with high and low levels of SF ACTs. Different sampling strategies in which medicine inspectors would test 1, 2, or 3 sample(s) of each brand of ACT were evaluated. Costs of inspection including device procurement, inspector time, reagents, reference testing, and replacement with genuine ACTs were estimated. Outcomes were measured as disability adjusted life years (DALYs) and incremental cost-effectiveness ratios were estimated for each device compared with a baseline of visual inspections alone. In the scenario with high levels of SF ACTs, all devices were cost-effective with a 1-sample strategy. In the scenario of low levels of SF ACTs, only four devices (MicroPHAZIR RX, 4500a FTIR, NIR-S-G1, and PADs) were cost-effective with a 1-sample strategy. In the multi-way comparative analysis, in both scenarios the NIR-S-G1 testing 2 samples was the most cost-effective option. Routine inspection of ACT quality using portable screening devices is likely to be cost-effective in the Laos context. This work should encourage policy-makers or regulators to further investigate investment in portable screening devices to detect SF medicines and reduce their associated undesired health and economic burdens.


Assuntos
Antimaláricos/química , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Medicamentos Falsificados/análise , Medicamentos Fora do Padrão/análise , Antimaláricos/economia , Técnicas de Química Analítica/economia , Serviços Comunitários de Farmácia , Análise Custo-Benefício , Medicamentos Falsificados/economia , Humanos , Laos/epidemiologia , Malária/tratamento farmacológico , Malária/economia , Malária/epidemiologia , Vigilância de Produtos Comercializados , Medicamentos Fora do Padrão/economia
5.
PLoS Negl Trop Dis ; 15(9): e0009360, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591844

RESUMO

BACKGROUND: Post-market surveillance is a key regulatory function to prevent substandard and falsified (SF) medicines from being consumed by patients. Field deployable technologies offer the potential for rapid objective screening for SF medicines. METHODS AND FINDINGS: We evaluated twelve devices: three near infrared spectrometers (MicroPHAZIR RX, NIR-S-G1, Neospectra 2.5), two Raman spectrometers (Progeny, TruScan RM), one mid-infrared spectrometer (4500a), one disposable colorimetric assay (Paper Analytical Devices, PAD), one disposable immunoassay (Rapid Diagnostic Test, RDT), one portable liquid chromatograph (C-Vue), one microfluidic system (PharmaChk), one mass spectrometer (QDa), and one thin layer chromatography kit (GPHF-Minilab). Each device was tested with a series of field collected medicines (FCM) along with simulated medicines (SIM) formulated in a laboratory. The FCM and SIM ranged from samples with good quality active pharmaceutical ingredient (API) concentrations, reduced concentrations of API (80% and 50% of the API), no API, and the wrong API. All the devices had high sensitivities (91.5 to 100.0%) detecting medicines with no API or the wrong API. However, the sensitivities of each device towards samples with 50% and 80% API varied greatly, from 0% to 100%. The infrared and Raman spectrometers had variable sensitivities for detecting samples with 50% and 80% API (from 5.6% to 50.0%). The devices with the ability to quantitate API (C-Vue, PharmaChk, QDa) had sensitivities ranging from 91.7% to 100% to detect all poor quality samples. The specificity was lower for the quantitative C-Vue, PharmaChk, & QDa (50.0% to 91.7%) than for all the other devices in this study (95.5% to 100%). CONCLUSIONS: The twelve devices evaluated could detect medicines with the wrong or none of the APIs, consistent with falsified medicines, with high accuracy. However, API quantitation to detect formulations similar to those commonly found in substandards proved more difficult, requiring further technological innovation.


Assuntos
Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Medicamentos Falsificados/análise , Avaliação Pré-Clínica de Medicamentos/instrumentação , Medicamentos Fora do Padrão/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Controle de Qualidade , Sensibilidade e Especificidade
6.
PLoS Negl Trop Dis ; 15(9): e0009674, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591852

RESUMO

BACKGROUND: Medicine quality screening devices hold great promise for post-market surveillance (PMS). However, there is little independent evidence on their field utility and usability to inform policy decisions. This pilot study in the Lao PDR tested six devices' utility and usability in detecting substandard and falsified (SF) medicines. METHODOLOGY/PRINCIPAL FINDINGS: Observational time and motion studies of the inspections by 16 Lao medicine inspectors of 1) the stock of an Evaluation Pharmacy (EP), constructed to resemble a Lao pharmacy, and 2) a sample set of medicines (SSM); were conducted without and with six devices: four handheld spectrometers (two near infrared: MicroPHAZIR RX, NIR-S-G1 & two Raman: Progeny, Truscan RM); one portable mid-infrared spectrometer (4500a), and single-use paper analytical devices (PAD). User experiences were documented by interviews and focus group discussions. Significantly more samples were wrongly categorised as pass/fail with the PAD compared to the other devices in EP inspections (p<0.05). The numbers of samples wrongly classified in EP inspections were significantly lower than in initial visual inspections without devices for 3/6 devices (NIR-S-G1, MicroPHAZIR RX, 4500a). The NIR-S-G1 had the fastest testing time per sample (median 93.5 sec, p<0.001). The time spent on EP visual inspection was significantly shorter when using a device than for inspections without devices, except with the 4500a, risking missing visual clues of samples being SF. The main user errors were the selection of wrong spectrometer reference libraries and wrong user interpretation of PAD results. Limitations included repeated inspections of the EP by the same inspectors with different devices and the small sample size of SF medicines. CONCLUSIONS/SIGNIFICANCE: This pilot study suggests policy makers wishing to implement portable screening devices in PMS should be aware that overconfidence in devices may cause harm by reducing inspectors' investment in visual inspection. It also provides insight into the advantages/limitations of diverse screening devices in the hands of end-users.


Assuntos
Anti-Infecciosos/química , Técnicas de Química Analítica/instrumentação , Medicamentos Falsificados/análise , Medicamentos Fora do Padrão/análise , Técnicas de Química Analítica/métodos , Humanos , Laos/epidemiologia , Projetos Piloto , Pilotos , Sensibilidade e Especificidade
9.
J Am Soc Mass Spectrom ; 32(6): 1388-1392, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33970637

RESUMO

This Communication describes a new thermal desorption/pyrolysis vacuum-assisted plasma ionization (pyro-VaPI) ion source coupled to ion mobility-mass spectrometry (IM-MS) for insoluble polymer analysis. Pyro-VaPI combines a pyrolysis device, soft ambient plasma ionization, IM, and MS into a single platform for polymer analysis with minimal sample preparation. Nylons, a widely used and well-studied thermoplastic, were chosen to evaluate the pyro-VaPI performance. Six different nylon polymers were studied and characterized. With the application of IM-MS, two different isobars for the protonated cyclic dimers of 6-6, 6-9, 6-10, and 6-12 nylon and two isobars for the cyclic tetramer of nylon-6 were detected at 200 °C. These isobars were observed at different heating times, with the species drifting faster in the IM cell appearing several minutes after the slower drifting species. To the best of our knowledge, these isobaric dimers and tetramers have not been previously reported, indicating that pyro-VaPI IM-MS is a useful tool for the structural characterization of heated or pyrolyzed polymers.

10.
BMJ Glob Health ; 3(4): e000725, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233826

RESUMO

BACKGROUND: Poor quality medicines have devastating consequences. A plethora of innovative portable devices to screen for poor quality medicines has become available, leading to hope that they could empower medicine inspectors and enhance surveillance. However, information comparing these new technologies is woefully scarce. METHODS: We undertook a systematic review of Embase, PubMed, Web of Science and SciFinder databases up to 30 April 2018. Scientific studies evaluating the performances/abilities of portable devices to assess any aspect of the quality of pharmaceutical products were included. RESULTS: Forty-one devices, from small benchtop spectrometers to 'lab-on-a-chip' single-use devices, with prices ranging from US$20 000, were included. Only six devices had been field-tested (GPHF-Minilab, CD3/CD3+, TruScan RM, lateral flow dipstick immunoassay, CBEx and Speedy Breedy). The median (range) number of active pharmaceutical ingredients (APIs) assessed per device was only 2 (1-20). The majority of devices showed promise to distinguish genuine from falsified medicines. Devices with the potential to assay API (semi)-quantitatively required consumables and were destructive (GPHF-Minilab, PharmaChk, aPADs, lateral flow immunoassay dipsticks, paper-based microfluidic strip and capillary electrophoresis), except for spectroscopic devices. However, the 10 spectroscopic devices tested for their abilities to quantitate APIs required processing complex API-specific calibration models. Scientific evidence of the ability of the devices to accurately test liquid, capsule or topical formulations, or to distinguish between chiral molecules, was limited. There was no comment on cost-effectiveness and little information on where in the pharmaceutical supply chain these devices could be best deployed. CONCLUSION: Although a diverse range of portable field detection devices for medicines quality screening is available, there is a vitally important lack of independent evaluation of the majority of devices, particularly in field settings. Intensive research is needed in order to inform national medicines regulatory authorities of the optimal choice of device(s) to combat poor quality medicines.

11.
Anal Chem ; 90(6): 3981-3986, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29494147

RESUMO

Many technologies currently exist that are capable of analyzing the surface of solid samples under ambient or vacuum conditions, but they are typically limited to smooth, planar surfaces. Those few that can be applied to nonplanar surfaces, however, require manual sampling and a high degree of human intervention. Herein, we describe a new platform, Robotic Surface Analysis Mass Spectrometry (RoSA-MS), for direct surface sampling of three-dimensional (3D) objects. In RoSA-MS, a sampling probe is attached to a robotic arm that has 360° rotation through 6 individual joints. A 3D laser scanner, also attached to the robotic arm, generates a digital map of the sample surface that is used to direct a probe to specific ( x, y, z) locations. The sampling probe consists of a spring-loaded needle that briefly contacts the object surface, collecting trace amounts of material. The probe is then directed at an open port liquid sampling interface coupled to the electrospray ion source of a mass spectrometer. Material on the probe tip is dissolved by the solvent flow in the liquid interface and mass analyzed with high mass resolution and accuracy. The surface of bulky, nonplanar objects can thus be probed to produce chemical maps at the molecular level. Applications demonstrated herein include the examination of food sample surfaces, lifestyle chemistry, and chemical reactions on curved substrates. The modular design of this system also allows for modifications to the sampling probe and the ionization source, thereby expanding the potential of RoSA-MS for a great diversity of applications.

12.
J Am Soc Mass Spectrom ; 29(4): 635-639, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29404968

RESUMO

In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. Graphical Abstract ᅟ.

13.
Anal Chem ; 89(21): 11301-11309, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29019648

RESUMO

Atmospheric pressure drift tube ion mobility spectrometry (AP-DTIMS) was coupled with Fourier transform Orbitrap mass spectrometry. The performance capabilities of this versatile new arrangement were demonstrated for different DTIMS ion gating operation modes and Orbitrap mass spectrometer parameters with regard to sensitivity and resolving power. Showcasing the optimized AP-DTIMS-Orbitrap MS system, isobaric peptide and sugar isomers were successfully resolved and the identities of separated species validated by high-energy collision dissociation experiments.

14.
J Am Soc Mass Spectrom ; 27(7): 1203-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27080004

RESUMO

Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 µm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA